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0.1 Introduction

This essay tells the story of a gauge theoretic picture of integrable systems
and the connection of the gauge theory to the Yang-Baxter equation, an
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equation which has proven central to the study of integrability.

In the first section we review what integrability is, and different established
notions of integrability. In particular we consider many-body scattering in
field theories and build a lattice of particle world-lines, with interactions
occurring where world-lines intersect. Statistical lattice models similarly have
a lattice with interactions occurring between nearest-neighbour pairs of spin
sites. In integrable theories, these interactions are constrained by the Yang-
Baxter equation.

More recently a similar picture of a lattice with interactions has been de-
veloped in gauge field theory, although the gauge theory must be carefully
chosen, and we spend section 2 setting up the details of this theory. In sec-
tion 3 we verify that first order Feynman diagram corrections agree with the
lattice picture and the Yang-Baxter equation from the first section.

There is an emergent algebraic structure arising from Feynman diagram cal-
culations, associated to this Yang-Baxter equation. This structure is known
as the Yangian, and section 4 explains this.

This essay is largely based on the work of Costello, Witten and Yamazaki in
[4].

1 A bridge between integrable systems

1.1 What is an integrable system?

Integrable systems are non-linear systems which are nevertheless exactly solv-
able.

This solubility comes from extra symmetries of the system, giving such sys-
tems rich structure. Many systems studied during an undergraduate degree
are integrable. In both classical and quantum settings, we study 3D systems
with a central potential, which are already integrable, but in particular the
harmonic oscillator and the hydrogen atom have further enhanced symmetry,
given by SU(3) and SO(4) respectively.

Study of integrable systems is not strictly academic. Many are based on
physical systems, and hence while perturbation theory may still be needed
to obtain very fine measurements, starting from a nearby integrable system
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rather than the free theory provides a much better background to perturb.
The hydrogen atom again is such an example.

Precisely what integrability means, and what it means to ‘solve’ a system
depends on the area of study. In geometry, there is a precise notion of, and
theorems about, integrability: in differential geometry there is Frobenius
theorem; in classical dynamics there is the Arnol’d-Liouville theorem. In
both these contexts, integrability is a statement about the geometry (to be
precise, a foliation) of the phase space induced by the flow generated by
the system. Furthermore, both feature conserved quantities, which index
the leaves of the foliation. In the classical dynamics setting, these further
correspond to symmetries via Noether’s theorem.

There are two other areas with established notions of integrability: PDEs
and lattice statistical mechanics. These have quantum analogues in the form
of continuum quantum field theories and quantum spin chains respectively.
What integrability means in either context is superficially quite different.
However, an emergent key player in both contexts is the Yang-Baxter equa-
tion, or YBE for short.

1.2 1+1 integrable PDEs, solitons and scattering

What does integrability mean in the world of 1+1 PDEs? There are many
‘signatures’ or ‘tests’ of integrability, displaying their rich structure: the
existence of n-soliton solutions; the existence of a Lax formalism; an infinite
number of integrals of motion; inverse scattering transforms; the Painlevé
property and so on. Examples include the Korteweg-De Vries equation and
the Sine-Gordon equation.

We may also view these PDEs as infinite dimensional dynamical systems,
and some of these PDEs have Hamiltonian structures which corroborate this
view.

The quantum analogue is 1+1 quantum field theories, and out of these sys-
tems, the focus of this section, the Yang-Baxter equation, emerges more
directly. However, we’ll begin in the more familiar classical picture. The
following discussion loosely follows [11].

The feature that will be most useful in the upcoming discussion is the n-
soliton solutions. Solitons are solutions that exhibit ‘localisation’, that is,
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they are strongly peaked in a single location, and have a defined velocity.
This makes them interesting candidates to model particles and particle in-
teractions as in QFT non-perturbatively.

Consider for example 2-soliton solutions to Sine-Gordon, illustrated in figure
1. In the far past, the two solitons are well separated. At some time, the
two particles have a nonlinear interaction. Remarkably, in the far future,
the solitons recover their form, at most picking up a phase factor. This is
not unlike how we see interactions in QFT, with the phase factor being the
S-matrix entry for this interaction.

Figure 1: Kink-antikink soliton solutions to the Sine-Gordon equation. δs is
the phase shift picked up during the nonlinear interaction

Particle creation is conspicuously absent from integrable scattering. This is
due to integrable systems having symmetry that preserves the velocity but
changes the position of particles in a way dependent on the velocity. Then
particle creation fails to be consistent with such symmetries. This can be
illustrated using scattering diagrams.

As in all theories of interaction, we describe the interaction mathematically
by a S-matrix. In this case the S-matrix is a phase dependent on the rapidi-
ties of the two particles z1 and z2,

S = S(z1, z2) = eiθ(z1,z2).

Then, taking into account Lorentz invariance of the Sine-Gordon equation,
in fact S must be dependent only on the difference

S = S(z1 − z2).
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Figure 2: The two particle scattering picture is preserved under

Let’s now consider a theory with K flavours. Each particle now has a flavour
state in a Hilbert space H ∼= CK , which we may take to be CK for concrete-
ness.

Now we not only have a possible dependence of the S-matrix on z1 − z2, but
also a change of flavour. We suppress rapidity dependence momentarily. We
consider scattering for particles indexed 1 and 2, with flavour state in H1, H2

respectively. Then there is an associated S matrix

S12 ∈ End(H1 ⊗H2).

What’s the interpretation of this? Given bases for the flavour spaces Hi, we
can write the components of S12, indexed as (S12)

ij
kl. This has the interpre-

tation of an amplitude associated with the interaction ek ⊗ el 7→ ei ⊗ ej.

Now we have talked about 2→2 scattering, and we have established that
particle creation (and annihilation) is forbidden. Hence the next interac-
tion to consider is 3→3 scattering, and here we introduce the Yang-Baxter
equation (YBE).
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It arises in the scattering setting as a consistency equation. In 3→3 scatter-
ing, there are two orders that the scattering can occur in. The YBE asserts
that the two events are the same, and therefore the amplitude, given by a
product of R-matrices from 2→2 scattering events, is equal for both.

Figure 3: Simple drawing of the YBE

This is a relation best illustrated using a picture, shown in figures 3 and 4,
and which can be written in many ways, dependent on how much detail one
wants to include. We will instead write it in terms of an R-matrix rather
than an S-matrix, but for now it can be thought of as simply a relabelling.
In its simplest form, suppressing dependence on parameters z, it may be
written

R23R13R12 = R12R13R23. (1)

Adding back in dependence on parameters we have

R23(z2−z3)R13(z1−z3)R12(z1−z2) = R12(z1−z2)R13(z1−z3)R23(z2−z3). (2)

Suppressing dependence on parameters but including flavour indices we have

(R23)
ef
mn(R13)

dn
lc (R12)

lm
ab = (R12)

de
op(R13)

of
aq(R23)

pq
bc , (3)

where we sum over repeated indices.

We now explain the R-matrix. The form of the equation with parameter
dependence has a symmetry: suppose we start from the YBE for the S-
matrix. Define the R-matrix as the S-matrix multiplied by an arbitrary
scalar function f(z):

R(z) = f(z)S(z).
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Figure 4: Drawing labelled with parameters and indices

Since the parameter-dependent YBE is homogeneous in its dependence on
arguments zi − zj, the R-matrix also satisfies the YBE. Using R makes it
explicit that we are free to exploit this symmetry, though we lose the inter-
pretation of its components being amplitudes.

To clear up a possible point of confusion, in 3 → 3 scattering we are now
acting on three particle states, which live in H1⊗H2⊗H3. But each Rij acts
only on Hi ⊗ Hj, and hence we must canonically extend them to operators
on the space of three particle states, for example R12 7→ R12 ⊗ 13, where 13

is the identity on H3, and similar for R13 and R23.

There is a similar consistency condition to the YBE arising in knot theory,
corresponding to the Reidemeister III move. Two link diagrams are equiva-
lent if they are related by such a move.

But there’s a crucial difference: in link diagrams the lines are shown to pass
over or under one another. This acts as an indicator for a third coordinate not
in the plane, say a z-parameter for height. Meanwhile in the YBE, the lines
intersect. In the scattering setting we viewed the parameter z as rapidity.
It turns out that, in the gauge theory setting, this z-parameter becomes a
complex parameter, called the spectral parameter.

In the quantum setting, we work perturbatively with quasi-classical R-
matrices, written Rℏ(z). The ‘quasi-classical’ means the matrix admits an
expansion in ℏ,

Rℏ(z) = I + ℏr(z) +O(ℏ2)

and r is referred to as the classical r-matrix, despite being the O(ℏ) term.
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Figure 5: Reidemeister III move in knot theory

Expanding the YBE to O(ℏ2) (at O(ℏ) it is trivially satisfied) gives the
classical YBE,

[r12, r13] + [r12, r23] + [r13, r23] = 0

where rij has argument zi − zj.

The solutions were classified in [2] under the assumption that r is non-
degenerate. The solutions are associated to the Lie algebra g of a Lie group
G, which can be thought of as the flavour symmetry. Curiously, the solution
need not have symmetry under G. We will spend some time in section 4
explaining in what sense such solutions are associated to G.

The z-dependence of r is also classified up to three classes of solutions, where
r is a rational, trigonometric or elliptic function of z. We can phrase this
in terms of the poles of r(z), which in the respective cases span a lattice of
rank 0, 1 or 2. This classification reflects a later choice we make regarding
the base space of our gauge theory.

In this essay we will focus on the rational case, and it turns out that solutions
to the YBE are related to a quantum group associated with g known as the
Yangian.

1.3 Solvable lattice models in classical statistical me-
chanics

Now we’ll relate the YBE to lattice statistical mechanics.

In statistical mechanics, there is a notion of integrability for lattice models,
but they go by ‘solvable lattice models’ rather than integrable. The most well-
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known of these is the Ising model in one and two dimensions, and famously
not any higher, but there are other examples such as the 6-vertex (ice-type)
model.

Solving a lattice model then requires the following steps:

A lattice model is specified by the following data:

• A graph G with vertices V = Λ a lattice and edges E containing the
data of nearest neighbours.

• A target space X which is often a G-set1, and referred to in physics
as the possible ‘spins’ of a site. For us these have the interpretation of
‘flavours’ and is a finite set.

• A functional H mapping configurations σ : Λ → X to R, and which
may also depend on a set of parameters {gi}. This is theHamiltonian,
or energy functional of the model.

To state what it means to solve such models, we take easy cases where the
lattice Λ is periodic and finite, and X is finite. Our configuration space

C = {σ : Λ → X}

is then also finite. The partition function is then defined (with β = 1)

Z =
∑
σ

exp(−H[σ; {gi}]).

Exactly solving the model means expressing the right hand side solely in
terms of the {gi}, or in field theory terms ‘integrating out’ the field σ.

To relate this to the Yang-Baxter equation, we now set up an infinite lattice of
the lines that earlier represented world-lines of particles. This interpretation
is morally dubious if we would like to have horizontal lines, so it is necessary
to take z to be a (complex) spectral parameter.

In Figure 6, the ‘world-lines’ are drawn in black. At each intersection point,
labelled in green, we have an R-matrix determining an interaction between

1This is a set which is naturally acted on by G. For the Ising model, X = {±1} which
is a Z2-set. Many well known lattice models can be formulated this way: for the Potts
model X is a Zn-set, the XY model has X a U(1)-set, and the n-vector model has X a
SO(n)-set. With the exception of the n-vector model these are G-torsors.
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the four edges. Each edge is assigned an index. This is the ‘flavour’ index
from our earlier discussion on YBE, but ‘spins’ of the lattice model. That is,
the vertices of the lattice model are the edges of the ‘world-line’ lattice. How-
ever, due to 4-vertex interactions we cannot portray general lattice models
arising from this picture with their own graph. But if the 4-vertex interaction
decouples into the appropriate 2-vertex interactions, we can show the lattice
model as a 2D square lattice as shown in Figure 7.

Figure 6: Constructing a lattice model from ‘world-lines’

On the other hand the six-vertex lattice model can be more directly viewed in
this picture, with edges able to take one of two spin states corresponding to
orientations of the edge, and the 4-vertex interactions being genuine 4-vertex
interactions.

In the statistical setting, the YBE is part of the structure of the model. In the
picture, it allows us to move parallel lines past one another. For calculations,
it allows us to solve models by defining an object called a transfer matrix
T which satisfies a ternary or RTT relation, a consistency relation which
reduces solving many-body problems to an eigenvalue problem for T . This
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Figure 7: If the 4-vertex interactions decouple into 2-vertex interactions, we
get a 2-dimensional lattice. With the appropriate flavour space, we recover
the Ising or clock models

method is known as the Bethe ansatz, but detailed discussion would take us
too far afield. There is an explanation in [6].

We’ve now found a relation between two superficially quite different ideas of
integrability, and met the YBE which ties these two pictures together. But
Costello’s insight was to see these systems through a gauge theory, and we’ll
spend the rest of the essay setting up which gauge theory we are interested
in, and relating calculations we do there back to this lattice picture and the
YBE.
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2 Four-Dimensional Chern-Simons Theory

Building a field theory

Let’s start with a recap of (pure) gauge field theories. Such a theory is
specified by the following data:

• A base smooth manifold M . In the field theory setting this is often a
Spacetime, a Lorentzian (Pseudo-Riemannian) manifold. For us, we
will be looking at a 4-manifold (hence four-dimensional Chern-Simons
theory (CST)) with structure to be discussed later. The traditional
setting for CST is the three-dimensional CST, based on a 3-manifold.

• A smooth (Lie) group G. For concreteness this will often be GL(N),
from complexifying U(N)

• A principal G-bundle P
π−→ M , which we take to be the trivial bundle

P ∼= M ×G.

• A principal connection A that is, a g valued 1-form on P , or a gauge
field A, which is A under a choice of global trivialisation or gauge.

2.1 Three-dimensional CST

We’ll first discuss three-dimensional CST, as some important features of four-
dimensional CST can be found here in a more straightforward setting.

2.1.1 Action

We want to define the Chern-Simons form, CS(A). In local coordinates
xi on M , the field A can be written in components

A = Aidx
i.

Each of the Ai are valued in g.

Let’s establish what g is for us, or rather which Lie algebras we are inter-
ested in. We are interested in finite-dimensional, semi-simple g over C. For
concreteness, g is usually a matrix algebra and in particular can be thought
of as glN or slN . For our purposes it doesn’t matter which we take.

Recall that, regardless of whether g is viewed as a matrix Lie algebra, we can
define the adjoint representation Ad : g → End(g) and the Killing form
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K : g× g → C defined

K(X, Y ) := TrEnd(g)(Ad(X)Ad(Y ))

where TrEnd(g) is the trace functional on End(g). There is a generalisation to

any representation g
ρ−→ End(V ),

Trρ : (X, Y ) 7→ TrEnd(V )(ρ(X)ρ(Y ))

and it is easily checked that this is symmetric and invariant. In this notation
K = TrAd. Further we quote that if we restrict to irreducible representations
ρ of simple g, these bilinear forms are the same, up to scalar factors. This
statement uses that C is algebraically closed, needed for Schur’s lemma to
hold.

In fact, these scalar factors themselves contain information about the group,
for example for slN

TrAd = 2NTr□

It is also established that for g semi-simple, these forms are non-degenerate,
so we can always choose a basis so that (Trρ)ab ∝ δab for all ρ, but due to
the scale factor disparity, we only normalise with respect to a choice of irrep.
We choose to normalise with respect to the adjoint representation2.

We then fix our basis {ta} for g as an adapted basis for the Killing form and
define Tr to satisfy

Tr(tatb) := TrAd(ta, tb) = δab.

We now define the Chern-Simons three-form, CS(A):

CS(A) := Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
.

2We can always do this since every g has an adjoint representation, but for slN , the
complexification of suN , another common normalisation is Tr = 2Tr□, with an explicit
basis of (generalised) Gell-Mann matrices. These are the Pauli matrices for N = 2,
the Gell-Mann matrices for N = 3. The index T (ρ) of a representation is defined with
respect to the fundamental representation: Trρ =: T (ρ)Tr□
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Note that the A ∧ A ∧ A term contains a product of three ta, which is a
problem for our interpretation of Tr being only a bilinear form. But we can
use the wedge to turn a pair of these into a commutator and

[ta, tb] = fabctc

to rewrite the term as a product of two ta.

The action for three-dimensional Chern-Simons then comes from integrating
this over a 3-manifold M :

SCST3 =
k

4π

∫
M

CS(A)

where k is a constant called the level. For gauge invariance, we require k ∈ Z.

Importantly, the action makes no reference to a metric! Hence observables in
this theory cannot depend on any notion of distance on the manifold, and can
only encode topological information, at least classically. This is in contrast
to Yang-Mills theory, for which the action contains a term FµνFρσg

µρgνσ.

2.1.2 Observables

The observables are Wilson lines, as for any gauge theory. These are known
in maths as the (trace of the) holonomy.

To define the holonomy, it is worth discussing the gauge fields and connec-
tions in more detail from the differential-geometric perspective. In particular,
holonomy will be introduced through the principal bundle. There is another
way of discussing holonomy using parallel transport of vector fields, found in
[1]. Details about principal bundles can be found in the appendix.

Holonomy

We now define the holonomy of a connection A (with components A under
some trivialisation) along a curve γ : [0, 1] → M . Let’s specialise further
to γ being a loop γ(0) = γ(1). This has tangent γ′ : [0, 1] → TM . We
can immediately view γ′ as an object γ̃′ : [0, 1] → TP , insisting that its
component in the fiber-wise or g direction is zero, but we cannot immediately
view γ as an object γ̃ : [0, 1] → P ; specifically there is no immediate way to
assign its value along the fibre3. To do this we rely on the connection.

3Strictly this means we haven’t defined γ̃′ fully, as we haven’t defined how far along
the fibre its basepoint is. But this doesn’t matter, due to G-invariance
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Figure 8: Holonomy: A picture of holonomy on the trivial U(1) bundle over
S1. The connection A maps the tangent γ′(t) at each point γ(t) to a vector
in g. Integrating this defines the lift γ̃ of γ to P . The difference along the
fibre between γ̃(0) and γ̃(1) is the holonomy for U(1).

The connection form projects γ′ at each point on γ onto g, which allows us
to set up a differential equation4 for a curve in the Lie group G:

g(0) = I, g′(t) = A(γ(t))γ′(t).

Using differential equation theory (Picard-Lindelöf), this has a solution
which we write as

g(t) = P exp

∫ t

0

A(γ(s))γ′(s)ds.

Where the ‘path-ordered exponential’ P exp . . . on the right hand side is really
defined as the solution to the differential equation. We can treat it as a formal

4there is a similar DE emerging in the vector bundle approach, where it appears as the
parallel transport equation. There is a minus sign discrepancy with the DE here which is
ultimately unimportant.
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expansion5:

g(t) = I+

∫ t

0

[A(γ(s))γ′(s)]ds+

∫ t

0

ds

∫ s

0

ds′[A(γ(s))γ′(s)][A(γ(s′))γ′(s′)]+· · · .

and this is how we will make sense of Wilson lines perturbatively, since we
will see that each A will come with a small, ‘loop-counting’ factor ℏ.

We then want to take the integral over the loop,

g(1) = P exp

∫ 1

0

A(γ(s))γ′(s)ds = P exp

∮
γ

γ∗A

The right-hand side expression is the holonomy, referred to in gauge theory
as Uγ(x, y) where (x, y) = (γ(0), γ(1)). However, this expression is not yet a
physical observable; it isn’t gauge invariant. Under a gauge transformation
g, we have A 7→ Ad−1

g A + dgg−1 = gAg−1 + dgg−1, and the corresponding
transformation of the holonomy is Uγ(x, y) 7→ g(x)Uγ(x, y)g(y)

−1. To form
a gauge invariant quantity we take the trace, under some representation ρ.
The resulting quantity

TrρP exp

∮
γ

γ∗A

is gauge invariant (conditional on x = y and this is the Wilson line, which
we write

Wρ(γ) := TrρP exp

∮
γ

γ∗A.

This tells us, as we move around the curve, how we’ve moved along our fiber.

We can then take expectation values of operators built out of these, defined
in the usual way:

⟨O⟩ =
∫
DA exp( iSℏ )O∫
DA exp( iSℏ )

,

where O is an operator built out of Wilson lines.

5The careful reader might be worried about taking products of A in the second order
term - and this product is not the g product [·, ·]. To do this concretely we would consider
this expression under a representation ρ. There is a second way to define the product
more abstractly, explained later in the essay.
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Amazingly, taking expectation values of Wilson lines gives quantum knot
invariants! This was explained by Witten, see for example [10]. The loop
γ is taken to be a knot6, and by taking the appropriate ambient 3-manifold
M and gauge group G, one can recover known knot or link invariants, such
as the Gauss linking number or the Jones polynomial.

These Wilson lines in the 4d theory play the role of the world-lines or lattice
lines discussed previously, and we will come back to this when discussing
quantum corrections.

2.2 Four-dimensional CST

2.2.1 Geometry of M

The structure of the 4-manifold on which the theory lives has been foreshad-
owed: we want a 2-manifold which houses our lattice, which, in keeping with
[4] we call the topological plane Σ, and a complex 2-manifold which houses
the spectral parameter, which we call the complex plane C. For concreteness,
we usually use Σ = R2, C = C.

What we mean by the lattice living on Σ is that the support of the Wilson
lines K is a 1-manifold in Σ and a single point in C. We will later see that
we’re obliged to do this by the theory.

In this concrete case, we can cover Σ × C with a single chart (x, y, z, z̄)
where (x, y) are Cartesian coordinates on Σ and (z, z̄) are (anti-)holomorphic
coordinates on C. These are flat coordinates for M . Our four-dimensional
action then comes from wedging CS(A) with dz:

S =
1

2π

∫
M

dz ∧ CS(A).

We could view our connection A as having four components, but the Az

component vanishes due to wedging with dz, and so we can identically view
it with three components:

A = Axdx+ Aydy + Az̄dz̄,

and we call this three component A a partial connection.

6or a link {γi}
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Note also that we have introduced an extra ‘length dimension’ to the action
in the form of dz, but the rest of the action is the same as for 3D CST. Then,
in a path integral formulation we have the expression exp(iS/ℏ). This means
the ‘loop-counting’ parameter ℏ must be dimensionful, with dimensions of
length. Furthermore, our theory is invariant under common rescalings of z
and ℏ, or in other words, symmetries of the ratio z/ℏ.

There are strong restrictions placed on possible C when we generalise M . To
generalise to M = Σ× C, we replace dz with a meromorphic 1-form ω, and
rewrite the action as

I =
1

2π

∫
M

ω ∧ CS(A).

This will lead to the action containing the ratio ω/ℏ. Then a zero of ω naively
corresponds to a point at which ℏ → ∞, a limit in which perturbation theory
breaks down. So we will restrict to zero-less ω.

This restricts both the geometry of C and the number of possible poles of ω
due to the Riemann-Roch theorem, which states in this setting that for
a meromorphic differential ω on a curve C of genus g,

number of zeros - number of poles = 2g − 2

so if we demand that perturbation theory is a good guide on C,

number of poles = 2− 2g.

Both the number of poles and g are non-negative integers. Then g may only
take the values one or zero, in which case C is a sphere or a torus. The
number of poles is then zero or two, and this splits into the further case of a
double pole or two single poles.

In the double pole case, by locating the pole at the infinity of the Riemann
sphere, we can realise ω as dz on C.

For two single poles, by placing one pole at zero, one at infinity, we get
ω = dz/z on C = C× ∼= C/Z.

For zero poles on a torus, we have ω = dz on the complex torus C = C/Λ = E
for Λ a lattice.

We then have lattices of rank 0, 1 and 2, which is exactly the classification
we had for the z-dependence of solutions to the classical r-matrix.
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There are also topological restrictions placed on Σ, arising due to quantum
corrections. We have an anomaly, that is, an obstruction to gauging, like
the more familiar gauge anomalies which arise in the Standard Model (or
rather, don’t arise!). For us, the anomaly is a framing anomaly, arising
from possible inconsistency in a choice of framing for our Wilson lines. This
framing anomaly is an important feature of the theory, but we will not go
into too much detail with it in this essay, and many details can be found in
[4].

For us, this means Σ must have a trivial frame bundle. Such manifolds are
‘parallelisable’ or ‘frameable’. This is also a strong restriction: for example,
if Σ is compact, then it must be the torus T 2. This suits the fact that this
is where our lattice lives, since we generally think of 2D statistical lattice
models as being on R2 or T 2 anyway.

Going forward, we will fix M = R2×C, but hopefully this discussion gives us
comfort that we can see many of the interesting features of the theory even
in this specialisation.

2.2.2 Detailed discussion of the action

Gauge symmetry

As with all actions, we should discuss symmetries. We’ll start with gauge
symmetry, although it’s really a redundancy. In the form of the action given,
it is perhaps not obvious that the action S is gauge invariant. However we
can integrate by parts to get

S = − 1

2π

∫
M

zTrF ∧ F,

which is dependent only on curvature forms which get traced over, and hence
is gauge invariant. The boundary term at infinity vanishes by infrared free-
dom which we see later.

We can view the presence of dz as giving extra gauge symmetry to A, that
is, A is invariant under A 7→ A+ αdz. We fix this gauge to ensure that A is
a partial connection.

This restricts the support of the Wilson lines we should consider, since if
the support varies in C then we don’t have a well defined notion of how

20



the Wilson line behaves. We therefore must choose our Wilson lines to be
supported at a single point z in C. This means the Wilson lines themselves
only depend on the components Ax and Ay.

Diffeomorphism symmetry

3D CST has full diffeomorphism symmetry, that is, it gives the same results

whether we calculate it on M or M ′ ϕ−−−→
diffeo

M , after pulling back all the ap-

propriate structures; this is necessary for the theory to define knot invariants.
However, this is broken in 4D CST by dz, which prevents diffeomorphisms
on C = C. Nevertheless, diffeomorphism symmetry on Σ remains.

Recall that Σ is where the lattice lives. This diffeomorphism symmetry means
that parallel lattice lines can be viewed as ‘arbitrarily far’ from each other.
This will be important when we discuss quantum corrections.

Equations of motion and non-renormalisation

What are the classical equations of motion? For 3D CST, the EOM imposes
vanishing field strength (curvature, in geometry), F = 0, which is equivalent
to having a flat connection A. For 4D CST, it is similar but restricted to the
non-z components:

Fxy = 0, Fxz̄ = Fyz̄ = 0.

Now A is the only field in the game, but it is not itself gauge invariant: local
gauge-invariant quantities are built from the field strength F . But if the EOM
is to be satisfied, these vanish. In general theories, under renormalisation
new interactions can appear, but in this case all possible counterterms must
vanish, and any shift in A can be absorbed into a redefinition.

If we didn’t have this condition, we would be forced to consider renormalisa-
tion of the theory. But this would be problematic, as the theory is actually
non-renormalisable by power counting. Luckily, this isn’t an issue, and the
non-renormalisability further helps us as it implies that the theory is infrared-
free.

When it comes to doing concrete calculations, we will be forced to pick a
metric (for example when we fix the gauge). But since our observables (the
Wilson lines) and our action are diffeomorphism-invariant, they must be
independent of the metric chosen. In this case we can exploit the IR-freedom
by creating ‘large distances’ via the metric where appropriate.
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This fills in another piece of the story linking a lattice of Wilson lines to in-
tegrable lattice models. For integrable lattice models, interaction is localised
to the vertices where lines intersect. This is the ‘local picture’ referred to in
[4]. In general gauge theories, the gauge field is ‘smeared’ over the support
of a Wilson line, and so are the interactions.

Interactions

Consider interactions consisting of a gluon exchange, that is, interactions
whose diagram consists of a single gluon line connecting two Wilson lines.
On our lattice, there are three types:

1. Gluon exchange from a Wilson line to itself

2. Gluon exchange between different parallel Wilson lines

3. Gluon exchange between different intersecting Wilson lines

Figure 9: The three types of gluon exchange. Only the third really con-
tributes, giving rise to the R-matrix interactions at lattice vertices

It turns out that only the third actually occurs, and these correspond to
the interactions from integrable lattice models. We’ll see later that gluon
propagators have a factor of ϵijk, which is the totally anti-symmetric tensor
where {i, j, k} are indices for coordinates (x, y, z̄) =: (x1, x2, x3). In particular
correlators of the form

⟨Ai(x, y, z, z̄)Ai(x
′, y′, z′, z̄′)⟩

vanish. But in cases 1 and 2, we have a coupling between the same component
of the gauge field. Hence to first order in perturbation theory, the only gluon
exchange contributions come from case 3.
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In the parallel case, in fact all possible contributions, not just tree level,
are removed by diffeomorphism invariance and IR freedom. Any interaction
occurs over the space between the lines. We can scale up the metric between
lines, and the IR freedom means that the interaction does not contribute.
Since this result must be diffeomorphism invariant, the interaction doesn’t
contribute for any metric.

IR freedom also resolves several problems regarding Wilson lines. Recall that
the Wilson line Wρ(γ) is only invariant if γ is a loop. But we want to build
a lattice out of Wilson lines, with endpoints x, y → ∞ on Σ. In fact, Wilson
loops do not survive quantisation due to the framing anomaly, explained
further in [4].

It also turns out to be undesirable to take the trace. It turns out that tracing
removes much of the interesting structure of the Yangian, and discussion of
this can be found in section 4.2 on power series algebras. Also, we took the
trace in order to cancel the g(x) and g(y)−1 appearing in the transformation,
but we’re no longer guaranteed that these are equal.

IR freedom resolves these issues for Wilson lines supported on γ with end-
points at infinity on Σ. Since the theory is IR free, we may view the gauge
field as vanishing at infinity. Now consider an infinitesimal gauge transfor-
mation generated by ξ, under which A 7→ A +Dξ where D is the covariant
derivative. The gauge field must vanish in any gauge, so A = A +Dξ = 0,
from which we get ∂µξ = 0. The generator is therefore constant at infinity,
and hence generates a constant gauge transformation eξ = g at infinity, but
we can use G-invariance to set g = e. We then have

lim
x,y→∞

Uγ(x, y) 7→ lim
x,y→∞

g(x)Uγ(x, y)g(y)
−1 = lim

x,y→∞
Uγ(x, y).

Therefore the holonomy is gauge invariant, and for this theory we build
observables from the holonomy itself.

3 Propagator and quasi-classical R-matrix

3.1 Wilson line propagator

The action has two terms, one quadratic in A, and one cubic in A. The
quadratic term serves as the kinetic term, shown in Feynman diagrams by
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a gluon propagator, while the cubic is the interaction, a three gluon vertex.
From earlier discussion, even after renormalising these remain as the only
possible expressions in the action.

We perturb A around the classical solution A = 0.

As always in QFT, we get the propagator from the quadratic part of the
action, which for us is the A ∧ dA part of CS(A).

We’ll also suppress the Tr for brevity, but it is present. In fact, with our
chosen basis we can write Tr(A∧ dA) as a decoupled sum of terms Aa∧ dAa,
where the Aa are 1-forms (valued in C). The propagator between Aa and Ab

will then include a factor δab.

We can draw a parallel with the wave operator (or Laplacian) and the Dirac
(or Weyl) operator being ‘half’ of such an operator, in the context of equa-
tions of motion for scalar and spinor fields. In Yang-Mills we typically have
a propagator based on kinetic term dAdA (schematically), but here we only
have a single derivative.

We define

AMA′ =

∫
M

dz ∧ A ∧ dA′

With the notation meant to suggest M is an infinite dimensional matrix. To
be more precise it is a distributional bilinear form on 1-forms A, mapping
pairs of 1-forms (A,A′) to C. Our goal then is to invert this bilinear form to
get the propagator, as is routine in the path integral formulation.

This form is degenerate though: if A′ is exact, that is, A′ = dα, then AMA′ =
0 for all A. We must fix a gauge to invert M uniquely. We will choose the
analogue of Lorenz gauge in this 4D CST, but other choices are available,
such as axial gauge.

The trickiest part of inverting M is inverting the differential d. To do this we
again use geometry. Take an oriented, (pseudo-)Riemannian manifold
(M, g, ϵ), with g a metric, ϵ a volume form. On p-forms, say α and β, we can
construct an inner products by from integrating the total contraction ⟨α, β⟩
over M , giving an inner product ⟨α, β⟩M =

∫
M
ϵ⟨α, β⟩.

The Hodge star is a map from p-forms to (dim(M)− p)-forms, defined via
α∧ ⋆β = ϵ⟨α, β⟩. More concretely it is given by totally contracting β with ϵ.
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The codifferential δ is the adjoint to the differential: for γ a (p − 1)-form
(taking appropriate p), we have

⟨α, dγ⟩M = ⟨δα, γ⟩M .

We see that δ lowers the degree of a form by 1. The generalisation of the
Laplace operator to this setting is the Laplace-de Rham operator or
Hodge Laplacian,

∆ = δd+ dδ.

This is self-adjoint:
⟨α,∆β⟩M = ⟨∆α, β⟩M .

In coordinates, one can show the Hodge Laplacian is the (negative of the)
Laplacian. We know how to invert Laplacians to find the fundamental solu-
tion from mathematical methods courses. We write this schematically as an
operator ∆−1. This, like the Laplacian, is self-adjoint.

We now specialise to the flat coordinates on M = R2 × C. We can write
down geometric structures concretely. These were the metric g and a volume
form ϵ.

We take the convention that Greek indices label (x, y, z̄, z) = (x1, x2, x3, x0)
while Latin indices label just (x, y, z̄).

The metric is the sum of the standard metric on R2 on C:

ds2 = dx2 + dy2 + dzdz̄.

It can be written as a constant matrix with components

gxx = gyy = 1, gzz̄ = gz̄z =
1

2

and all other components zero, with inverse

gxx = gyy = 1, gzz̄ = gz̄z = 2

and all other components zero.

The volume form is the tensor product of volume forms on R2 and C and
is simply the totally antisymmetric form ϵµνρσ multiplied by a normalisation

factor of
√

|g| = 1
2
.
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It is also useful to define a totally antisymmetric 3-form ϵijk as well as a three
dimensional Hodge star ⋆3J = ⋆dz ∧ J .

Some of the following manipulations will be formal, with the hope to motivate
the eventual expression for the propagator. In that spirit we work modulo
sign and numerical factors.

The standard Lorenz gauge condition (which is not the gauge we will fix),
∂µAµ, can be written as δA = 0. In that case the Laplace operator can be
written ∆ = δd. We can naively invert this to get d−1 = ∆−1δ.

Returning to the M that we wish to invert, it can be easily checked that it
is symmetric. We’ll also define an inner product on 1-forms,

(A, J) = ⟨dz ∧ A, dz ∧ J⟩M =

∫
M

dz ∧ A ∧ ⋆3J

We’d now like add a source term and ‘complete the square’. As usual this
requires us to introduce a source 1-form J and look at an expression of the
form

(A+M−1J)M(A+M−1J)

this expands into

AMA+ 2AMM−1J +M−1JMM−1J

and we get a defining equation for M−1,

AMM−1J = (A, J)

We will interpret M−1 as telling us to integrate against GJ rather than J ,
where G is some linear map to be determined, giving∫

M

dz ∧ A ∧ dGJ =

∫
M

dz ∧ A ∧ ⋆dz ∧ J.

Comparing both sides, we get

dGJ = ⋆dz ∧ J

and applying the formal d−1,

GJ = d−1 ⋆ dz ∧ J = ∆−1δ ⋆ dz ∧ J
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now using the identity δ = ⋆d⋆, and ⋆⋆ = 1 (both identities modulo sign)

GJ = ∆−1 ⋆ d(dz ∧ J) = ∆−1 ⋆ dz ∧ dJ.

We now evaluate the generating function term, quadratic in J . This can be
rewritten as

(J,M−1J) =

∫
M

dz ∧ J ∧ ⋆dz ∧GJ.

we now expand G and do a series of manipulations

(J,M−1J) =

∫
M

dz ∧ J ∧ ⋆dz ∧∆−1 ⋆ dz ∧ dJ

=

∫
M

dz ∧ J ∧ ⋆∆−1dz ∧ ⋆dz ∧ dJ

=

∫
M

dz ∧∆−1J ∧ ⋆dz ∧ ⋆dz ∧ dJ

=

∫
M

dz ∧∆−1J ∧ ⋆3 ⋆3 dJ

=

∫
M

dz ∧∆−1J ∧ dJ

=

∫
M

dz ∧ J ∧ d∆−1J

=

∫
M

d4xϵijkJi∂j∆
−1Jk

and recalling the fundamental solution for Laplace’s equation in four dimen-
sions:

G4(x, y, z̄, z; 0, 0, 0, 0) = − 1

4π2

1

x2 + y2 + zz̄

we arrive at the expression

− 1

4π2
ϵijk∂j

1

x2 + y2 + zz̄
.

This is close to the expression in [4], and is correct component-wise up to
numerical factors. In the next section we discuss why the Lorenz gauge
condition ∂µAµ is not what we want, and pin down these numerical factors.
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3.2 Evaluating the integral

3.2.1 Take 1: Lorenz gauge

The gauge we choose is the analogue of the Lorenz gauge condition for this
theory, which is not

0 = ∂µAµ = gµν∂νAµ =
∂

∂x
Ax +

∂

∂y
Ay + 2

∂

∂z
Az̄

as might be expected, but instead is the gauge condition leading to each
component of Ai being harmonic. It turns out this is

0 =
∂

∂x
Ax +

∂

∂y
Ay + 4

∂

∂z
Az̄.

Ai being harmonic requires in addition that the linearised EOM dz ∧ dA = 0
holds, so called as it implies that the field strength F vanishes at linear order.
The linearised EOM implies

∂iAj = ∂jAi.

It holds only for Latin indices. Then to verify that each Ai is harmonic, we
have

∂µ∂
µAi = (∂2

x + ∂2
y + 4∂z∂z̄)Ai.

By the linearised EOM, this expression is

∂x∂iAx + ∂y∂iAy + 4∂z∂iAz̄ = ∂i(RHS of gauge condition).

We see that the factor of two difference between the naive and actual Lorenz
gauge conditions comes from the partial connection Ai not having a z com-
ponent, while in the wave operator, ∂µ does.

We can define Di with components Di = (∂x, ∂y, 4∂z) to write the gauge
condition as DiAi = 0, and the wave operator as ∂µ∂µ = Di∂i.

Now if we add a gauge fixing term to the action, the expression relevant for
deriving the propagator is

S + Sgf ⊃ 1

2π

∫
d4x

(
ϵijkTr(Ai∂jAk)− ξ−1Tr(DiAi)

2
)
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so that the propagator Pij(x
µ) is the Green’s function for the equation

1

π
(ϵijk∂j + ξ−1DiDk)Pkl(x

µ) = δabδilδ(x
µ).

Then in Landau gauge ξ = 0, we have the solution

Pij(x
µ) = − 1

4π
δabϵijkD

k 1

x2 + y2 + zz̄

which can be written in full as

−δab
1

4π

(
4dx ∧ dy

∂

∂z
+ dz̄ ∧ dy

∂

∂y
+ dy ∧ dz̄

∂

∂x

)
1

x2 + y2 + |z|2

and we define P ab(x, y, z, z̄) = δabP (x, y, z, z̄) to be the above expression.

Comparing to the earlier expression, up to numerical factors the only real
difference is we had ϵijk∂k instead of ϵijkD

k here.

Figure 10: Propagators for gluon and intersecting Wilson lines

This is merely the gluon propagator. However, we want the propagator
between Wilson lines. Without loss of generality we take two Wilson lines,
aligned along the x-axis and y-axis, with corresponding representations ρ and
ρ′, and supported at z1, z2 respectively in C. The gauge field was smeared
along them, so we must integrate the propagator along both axes. Recall that
the propagator is ‘quadratic’ in the A, but the actual fields are amputated.
We work at first order in the formal expansion of the path ordered exponential
for each line, giving a contribution of ta,ρ and tb,ρ′ from the respective lines.
The Wilson line propagator is then

I1 = ℏ(ta,ρ ⊗ tb,ρ′)

∫
dxdyP ab(x,−y, z1 − z2, z̄1 − z̄2)
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We define the tensor Casimir c = tata = ta⊗ta, an element of the universal
enveloping algebra (UEA for short, discussed in section 4.3). We define this
under a representation ρ ⊗ ρ′ as cρρ′ = ta,ρ ⊗ ta,ρ′ . This allows us to rewrite
the propagator

I1 = ℏcρρ′
∫

dxdy

(
− 1

4π

(
4
∂

∂z

)
1

x2 + y2 + |z|2

) ∣∣∣∣∣
z=z1−z2

which, after some algebra, gives

I1 =
ℏcρρ′
z1 − z2

.

This has the same form as what is known as the semi-classical r-matrix,
which is the first order correction of a ℏ expansion of the R-matrix:

R = I + ℏr +O(ℏ2) = I + ℏ
cρρ′

z1 − z2
+O(ℏ2).

Note that we didn’t really need to know anything about the integral to find
the group theoretic factor of cρρ′ , but we needed to evaluate the integral to
derive the z-dependence.

3.2.2 Take 2: Axial gauge

There’s another choice of gauge which makes this computation trivial. This
is axial gauge, where we fix the gauge to remove the z̄ component:

Az̄ = 0.

Recall the relevant term in the propagator is

1

2π

∫
d4xϵijkTr(Ai∂jAk).

In this gauge the only surviving component (after integrating by parts) is

1

π

∫
d4xTr(Ay∂z̄Ax).

The Green’s function to be calculated then satisfies

1

π

∂

∂z̄
P (xµ) = δ(xµ)
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which is satisfied by

P (xµ) =
1

z
δ(x)δ(y).

Substituting this into the initial expression for the Wilson line propagator

I1 = ℏ(ta,ρ ⊗ tb,ρ′)

∫
dxdyP ab(x,−y, z1 − z2, z̄1 − z̄2)

immediately gives the same final answer as before.

The only part left to verify is that

1

π

∂

∂z̄

1

z
= δ(z).

Away from z = 0 the equation holds since 1/z is holomorphic. We then
check the sampling property. Note that if z = u+ iv, the change of measure
is dudv = − 1

2i
dz̄dz. The sampling property may be checked by integrating

against a test function f(z, z̄) over a ball around the origin and applying the
residue theorem.

3.3 Yang-Baxter Equation Verification

We should check that the expression we derived for the R-matrix satisfies the
YBE, at least to first order in ℏ, and therefore really is the quasi-classical
R-matrix.

First we do a concrete calculation with the YBE to see what the expected
result is. Fix a representation (V, ρ,G). Consider the case where both par-
ticles involved in scattering are in V . Then the R-matrix is an element of
End(V ⊗ V ). The only G-invariant elements of this space are the identity
I : ei ⊗ ej 7→ ei ⊗ ej, and the permutation operator P : ei ⊗ ej 7→ ej ⊗ ei.

The most general R-matrix respecting G-invariance can then be written

R(z) = A(z)I +B(z)P

where A and B are scalar functions of z. Recall we have the freedom to re-
scale R by an arbitrary function f(z). Taking f = 1/A gives the equivalent
R-matrix

R(z) = I + U(z)P
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where U = B/A.

The Yang-Baxter equation is an equation for three-particle state operators,
End(V ⊗ V ⊗ V ). Then when both sides are applied to an arbitrary basis
element ei ⊗ ej ⊗ ek, they must agree.

We apply either side of the YBE to a three-particle state, labelled by the
spectral parameters (z1, z2, z3) and in flavour state ei ⊗ ej ⊗ ek. The result
is a linear combination of permutations of the basis elements, ei′ ⊗ ej′ ⊗ ek′
where {i′, j′, k′} = {i, j, k}, and coefficients a product of Uij := U(zi − zj).
Matching these up gives many trivially satisfied equations, but looking at
the ej ⊗ ek ⊗ ei or ek ⊗ ei ⊗ ej components gives

U13U23 + U12U13 = U12U23.

Dividing through by U12U23U13, and defining W = 1/U gives

W (z1 − z2) +W (z2 − z3) = W (z1 − z3)

which can be rewritten

W (z) +W (w) = W (z + w).

For W continuous, the solution is W (z) ∝ z. From dimension considerations,
W (z) ∝ z/ℏ up to a dimensionless scalar. We can therefore write the R-
matrix as

R(z) = I + c
ℏ
z
P

where c is a constant determined by choice of normalisation for the ta.

We now compare to the quasi-classical R-matrix from the gauge theory. The
result from the propagator was

R(z) = 1 +
ℏ
z
cρρ +O

when both particles are in the same representation.

We specialise to the concrete example G = SL2, V = C2. This is the com-
plexification of SU(2) so we take the standard basis of Pauli matrices

σ1 =
1√
2

[
0 1
1 0

]
, σ2 =

1√
2

[
0 −i
i 0

]
, σ3 =

1√
2

[
1 0
0 −1

]
. (4)
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where the normalisation is chosen so that the trace form is normalised to 1.

The action of the tensor quadratic Casimir

cρρ =
1

2

([
1 0
0 −1

]
⊗

[
1 0
0 −1

]
+

[
0 1
1 0

]
⊗
[
0 1
1 0

]
+

[
0 1
−1 0

]
⊗
[
0 −1
1 0

])
(where the last term is just a rewriting of the σy term) is, on basis elements
ei ⊗ ej,

e1 ⊗ e1 7→
1

2
e1 ⊗ e1,

e1 ⊗ e2 7→
1

2
(−e1 ⊗ e2 + 2e2 ⊗ e1),

e2 ⊗ e1 7→
1

2
(−e2 ⊗ e1 + 2e2 ⊗ e1),

e2 ⊗ e2 7→
1

2
e2 ⊗ e2.

The last two mappings can also be deduced by symmetry. These mappings
mean we can write cρρ as

cρρ = −1

2
I + P.

This doesn’t give exactly P . Substituting the expression into the R-matrix
gives

R(z) = I +
ℏ
z

(
−1

2
I + P

)
+O(ℏ2)

which may be rewritten

R(z) =

(
1− ℏ

2z

)
I +

ℏ
z
P +O(ℏ2)

but this is not of the form R(z) = I + U(z)P , since the I term has z depen-
dence. We can divide out the z dependence at this order in ℏ. Since the P
term is at O(ℏ), it is only corrected at O(ℏ2). Therefore we really do have

R(z) = I +
ℏ
z
P +O(ℏ2).
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4 OPE of Wilson lines and the Yangian

4.1 Evaluating the integral

The main goal of this essay is to foster the link between statistical lattice
models and this 4D CST, but a secondary goal is to introduce an algebraic
structure associated to rational solutions to the Yang-Baxter equation known
as the Yangian Y (g). This will emerge naturally from some choices we make
when we evaluate the OPE for Wilson lines.

Using diffeomorphisms we can combine parallel Wilson lines on Σ to consider
them as a single Wilson line.

Recall that each Wilson line has an associated representation ρ. If we have
two lines in the representations ρ, ρ′ for g, then we might expect the ‘com-
bined’ line to have associated representation ρ ⊗ ρ′ for g. This is true at
the classical level, seen from the figure as an external field coupling to each
Wilson line individually. But when the external field couples to both lines,
we get something new. In fact, we won’t end up with a representation of g
at all.

Figure 11: Up to O(ℏ) contributions to the vertex coupling a bulk gauge
field A to two Wilson lines.

The diagram we wish to evaluate is of a gauge field A coupling to two parallel
Wilson lines through an interaction vertex. We have not yet discussed this
interaction, but from the action it can be seen to be

i

2π
fabcdzϵijk.

We first discuss the algebraic factor without evaluating the integral. As
before, the Wilson lines come with factors t′b := tb,ρ′ and t′′c := tc,ρ′′ . The
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third Lie algebra index contracts with the a component of the external gauge
field. The algebraic factor of interest is then fabct′b ⊗ t′′c . We can incorporate
the ℏ factor into this, and we define

ta,1 = −ℏ
2
fabct′b ⊗ t′′c .

To find the integral we wish to evaluate, we set up as follows: we have
two Wilson lines K and K ′. On R2 they are parallel to the x-axis. K is
supported on y = 0, K ′ supported on y = ϵ. In C, they must coincide to
have a non-trivial OPE, so we set them to have coincident support at z = 0.

Compared to the interactions in which the external A field couples directly to
one Wilson line (while ignoring the other), which we call theO(1) interaction,
this interaction is O(ℏ) as it has two more propagators giving a ℏ2 factor and
one more vertex giving ℏ−1.

Outside the integral we therefore have a factor

i

2π
ℏfabct′a ⊗ t′′b = − i

π
tc,1.

The integral is done over the two Wilson lines, giving integrals
∫
xi∈R for i ∈

{1, 2} and the external field A is integrated over M . Inside the integral, we
have two propagators, the external field Ac and the dz from the interaction.
Putting this all together (and suppressing the z̄ coordinate in the arguments)
gives the integral

I2 = − i

π
tc,1

∫
x1,2∈R,x∈M

P (x− x1, y, z) ∧ dz ∧Ac(x, y, z) ∧ P (x− x2, y − ϵ, z).

We can define the propagator integrated over x (in Lorenz gauge),

P ′(y, z) :=

∫
R
dxP (x, y, z) = −1

4

(
4dy

∂

∂z
− dz̄

∂

∂y

)
1

(y2 + |z|2)1/2

where the factor of 1/π is cancelled by π from an arctan integral of x.

We can then rewrite

I2 = − i

π
tc,1

∫
x∈M

P ′(y, z) ∧ dz ∧ Ac(x, y, z) ∧ P ′(y − ϵ, z).
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and we can shuffle these forms to get

I2 = − i

π
tc,1

∫
x∈M

Ac(x, y, z) ∧ dz ∧ P ′(y, z) ∧ P ′(y − ϵ, z).

We now quote that, in the ϵ → 0 limit,

dz ∧ P ′(y, z) ∧ P ′(y − ϵ, z) ∼ π

i

∂

∂z
δ3(y, z, z̄)

where ∼ is equivalence up to leading order in a perturbative expansion of ϵ.
The computation is long and not particularly enlightening, and its proof can
be found in [4]. Using this result gives

I2 ∼ tc,1

∫
x∈R

dx
∂

∂z
Ac|y,z,z̄=0

after integrating by parts and sampling the δ.

There’s another view we can take of this expression, which is that ∂
∂z
Ac is a

‘formal derivative’, in the sense that we need not interpret it as the actual z
derivative of some field A(x, y, z, z̄). To emphasise this we can write instead
∂
∂z
Ac = Ac,1.

The reason we can take this view is that our Wilson lines are supported at
a single point in C. This means that in the holonomy, only the Ax and Ay

components of the gauge field contribute. We can then view Â(x, y, z) =
A(x, y, z, z̄)|z̄=0 as a generalisation of two-dimensional gauge fields with only
x and y components. By setting z̄ = 0, the resulting field is holomorphic in
z and so we may write it as a series expansion:

Â(x, y, z) =
∑
k∈N0

zk

k!

∂k

∂zk
A(x, y, z, z̄)|z,z̄=0.

We can further expand the right hand side in terms of ta, and collecting this
together with the zk gives the expression∑

c,k

1

k!
tcz

kAc,k.

We define ta,k = taz
k to write ∑

c,k

1

k!
tc,kA

c,k,
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allowing us to view I2 as the integral over x of the k = 1 term of this sum.

We started from representations ρ′, ρ′′ for g, but out of the OPE we have
received this tc,1 term, which doesn’t obviously fit into a representation of g
(and doesn’t). We’d like to make sense of this expression, as well as other
possible new expressions coming from combining Wilson lines.

4.2 Power series algebra g[[z]]

We defined ta,k = taz
k. The span of such elements is

X0 +X1z +X2z
2 + · · ·

where the Xi are valued in g. We therefore have a space of power series in z
with coefficients in g.

Given a ring R, it is possible to define the formal power series ring, R[[X]].
The elements of this ring are power series in X with coefficients of R. The
‘formal’ means there is no need for any notion of convergence of the power
series, and we’ll omit the ‘formal’ going forward.

Now an algebra A, in the abstract algebra sense, itself has ring structure,
while also carrying a scalar action from its scalar ring R, just as vector
spaces V are additive groups carrying a scalar action from a ring.

This allows us to define the power series algebra for algebras A[[X]], using
the ring structure on A. For us, A = g and X = z, the spectral parameter.
g[[z]] then has basis given by elements

ta,i := taz
i.

The commutator is
[ta,i, tb,j] = fabctc,i+j.

This space has an infinite dimensional basis, but a finite set of generators,
given by the ta = ta,0 and ta,1.

In practice, we work under representations that truncate these power series
at a finite power. We can implement this at the algebra level by quotienting
by the ideal I = (zn), so that ta,i = 0 for i ≥ n (strictly we should use
equivalence rather than equality). Note this is equivalent to a quotient of the
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polynomial algebra g[z]. Truncating at order n gives a n×dim(g) dimensional
algebra from our original infinite dimensional algebra. This also eliminates
the earlier need for formality: since the series truncate, there are now no
worries about convergence.

The case n = 1, that is, g[[z]]/(z), is just g itself. The case n = 2, for the
space g[[z]]/(z2), the space contains a copy of g, but now also new elements
gz. The commutators with the new basis elements are

[ta,1, tb,1] = 0

[ta,1, tb,0] = fabctc,1.

This algebra can be realised with g-valued matrices:

ta,0 =

[
ta 0
0 ta

]
, ta,1 =

[
0 ta
0 0

]
. (5)

This can be formulated in terms of dual numbers7. This is the space of
numbers of the form a + bϵ, where a, b ∈ R and ϵ is a symbol satisfying
ϵ2 = 0. This should be reminiscent of C, which instead has a symbol i
satisfying i2 = −1. We can realise both algebras as matrix algebras; for the
more familiar C, the defining map for the isomorphism is

i 7→
[
0 −1
1 0

]
.

For the dual numbers, the defining map is

ϵ 7→
[
0 1
0 0

]
.

Our representation of g[[z]]/(z2) can then be phrased as dual numbers but
with coefficients a, b ∈ g instead, viewing z as ϵ.

We can then generalise to truncation at order n, using the nth order dual
numbers, which is now defined by a symbol ϵ, such that ϵn = 0, realised by
an n × n matrix algebra, where ϵ is the matrix with a diagonal of ones just

7These are 1-dimensional Grassmann numbers
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above the main diagonal, and zeros everywhere else. Then g[[z]]/(zn) has a
concrete realisation in terms of g-valued matrices.

Note that under this representation, the trace of any non-zero power of ϵ
vanishes, and this should be independent of the representation; this is why
it was undesirable to take the trace of the holonomy. Taking traces leaves us
with only g[[z]]/(z) = g.

4.3 Universal enveloping algebras U(g) (UEAs)

Our definition for ta,1 was

ta,1 = −ℏ
2
fabct′b ⊗ t′′c .

which is a linear combination of terms of the form ρ′(tb) ⊗ ρ′′(tc). This is a
representation ρ′ ⊗ ρ′′, but note that different elements of g appear as the
argument in the different representations, so this is not the representation
ρ′ ⊗ ρ′′ for g, which is

ρ′ ⊗ ρ′′(X) = ρ′(X)⊗ I + I ⊗ ρ′′(X).

To make sense of this expression, we again start from g. Recall a represen-
tation ρ : g → End(V ) preserves ‘multiplication’ (the bracket) in g

ρ([X, Y ]) = [ρ(X), ρ(Y )] = ρ(X)ρ(Y )− ρ(Y )ρ(X),

but the bracket in End(V ) relies on a different notion of multiplication in
End(V ), namely composition, which doesn’t exist in g. Hence through a
representation, g inherits a new product,

X ·ρ Y = ρ(X)ρ(Y ).

This is what allows us to define the quadratic Casimir under a representation
ρ, and basis {ta}:

Cρ =
∑
a

ta ·ρ ta =
∑
a

ρ(ta)ρ(ta).

Our goal is now to lose this reliance on a particular choice of representation,
and find an algebra containing (or enveloping) g, with its own multiplication
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which agrees with ·ρ for any representation ρ (it factors through representa-
tions, an example of a universal property) and the bracket on g, while being
as free as possible.

As is unsubtly hinted, this is the universal enveloping algebra, or UEA
for short.

Let’s clarify what is not the UEA. If g < Matn×n(C) is a matrix Lie al-
gebra, we have a multiplication of elements X, Y given simply by matrix
multiplication. We might be tempted to say the UEA is the ambient matrix
algebra. We specialise further to sl2 in its fundamental representation, which
has Cartan-Weyl basis

H =

[
1 0
0 −1

]
, E1 =

[
0 1
0 0

]
, E−1 =

[
0 0
1 0

]
. (6)

Then E2
1 = 0. But this is not true in the UEA, as there is nothing in the

Lie algebra g alone which enforces this relation. What made the ambient
matrix algebra a ‘natural’ thing to consider is that sl2 came equipped with
a representation: its fundamental representation.

Let’s now construct the UEA. Like any vector space, we may take an n-fold
tensor product of g, written g⊗n. The direct sum of these spaces, to all
‘powers’ of g, is the tensor algebra of g:

T (g) =
⊕
n∈N

g⊗n.

The tensor algebra product is the tensor product, but makes no reference to
the product on g. We could have defined T (V ) for V a vector space. T (V )
is unital, with unit denoted I.

For an idea of what the elements of T (g) are, if we take a basis {ta} of g, then
a basis of T (g) is ‘words’ made out of {ta}, of the general form ta1ta2 · · · tan ,
where the tensor product between ta has been omitted for brevity. All distinct
words are linearly independent. We can view elements of the tensor algebra
as ‘non-commutative’ polynomials. The tensor product acts as concatenation
on these words.

To include the structure of g, we impose

tatb − tbta = fabctc.
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or without reference to a basis

XY − Y X = [X, Y ]

Note that the left-hand side lives in g ⊗ g while the right-hand side lives
in g. We can view the bilinear bracket [·, ·] : g × g → g as a linear map
[·, ·] : g⊗ g → g. We refer to the UEA as U(g)

This construction may seem unfamiliar. We will compare to what might
initially seem like a very different setting of differential forms, where we have
a basis {dxi} for T ∗

pM and product ∧ on the tensor algebra T (T ∗
pM). Instead

of the commutator we impose

dxi ∧ dxi = 0.

or for any 1-form ω,
ω ∧ ω = 0

Which gives the exterior algebra
∧
T ∗
pM . Such a description makes the

UEA and the exterior algebra quotients of a tensor algebra. In an alge-
braic formulation, these arise as quotients by ideals, generated by expressions
of the form appearing in the imposed equations.

For our purposes, in for example a UEA, the quotient means we can replace
any occurrence of tatb− tbta with fabctc, or equivalently tatb with tbta+fabctc.
This is allowed even if tatb appears within an expression tensored with other
terms, say tctatbtd.

There is a possible point of confusion. The product in the tensor algebra is
concatenation and denoted by the tensor product symbol ⊗. The product
under representations is inherited from the endomorphism algebra. This
replacement rule suggests the two are the same, but this is only sometimes the
correct way to think about it. Furthermore, the tensor product in the tensor
algebra is not interchangeable with the tensor product for representations.
To distinguish them, we often omit ⊗ in the tensor algebra.

For example, take elements tatb, tctd ∈ U(g). Their product is tatbtctd. How-
ever, under a representation ρ⊗ ρ′, these are ρ(ta)⊗ ρ′(tb) and ρ(tc)⊗ ρ′(td),
which multiply to give ρ(ta)ρ(tc) ⊗ ρ′(tb)ρ

′(td). This changes the order that
the ta appear in, and so the elements of the UEA factor through ρ ⊗ ρ′

in a perhaps unexpected way. Furthermore, note this representation is for
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g⊗ g < U(g), not to be confused with the representation ρ⊗ ρ′ for a single
copy of g.

From this replacement rule we can view the UEA as a generalisation of the
symmetric algebra Sym(V ), where we have a ⊗ b = b ⊗ a. In a simi-
lar vein, geometric or Clifford algebras8 Cl(V,Q) are a generalisation of
exterior algebras, in the sense that the symmetric algebra is a UEA with van-
ishing commutators (respectively, anticommutator for exterior and Clifford
algebras).

Symmetric and exterior algebras should be familiar to field theorists as these
are the spaces that multi-particle systems live in!910 In quantum mechanics,
these are studied for fixed tensor powers n. But in quantum field theory,
particle number is no longer fixed, so we are obliged to consider all possible
powers; these are Fock spaces.

We can gain some familiarity by thinking about bases to these spaces. For
now, we forget the algebra structure of g and consider only its underlying
n-dimensional vector space V .

Given a basis {ei} for V , we can form a finite-dimensional basis for the
exterior algebra

∧
V in bijection with increasing sequences of range(n) =

1, · · · , n. Meanwhile Sym(V ) has an infinite-dimensional basis in bijection
with non-decreasing sequences.

Happily the basis for the symmetric algebra provides a basis for the UEA11

due to the right-hand side of the defining equation for the UEA having a lower
‘power’ of g. Starting from an arbitrary word of basis elements of ‘order’ n,
we may shuffle them so that the indices are non-decreasing. This gives an
element of the standard basis and error terms of order at most n − 1. We
can induct on this algorithm, which terminates due to the order decreasing
strictly.

8With quadratic form Q
9They are also interesting in the context of representation theory on V ⊗n, as they are

the spaces on which the symmetric group Sn acts in the trivial and sign representations
respectively. These are useful to consider in problems about irreducible decompositions of
tensor products, through the Schur-Weyl decomposition theorem.

10Yet another area where the exterior algebra appears is in the mathematical formulation
of Grassmann numbers, used for describing fermions.

11Similarly for the exterior and Clifford algebras

42



With some extra structures, the tensor algebra can be made aHopf algebra.
Quotients of the tensor algebra inherit this structure. We discuss these extra
structures later, as it is in one of these structures that the deformation that
defines the Yangian emerges most clearly.

4.4 ℏ deformation

Now U(g[[z]]) is a space containing ta,k and tensor products like ta ⊗ tb.
However, ta,1 as defined does not satisfy the algebra of g[[z]].

We can derive an identity that must be satisfied by the ta,1. In g[[z]] we have
the commutator

[ta,1, tb,1] = fabctc,2.

We multiply the Jacobi identity for structure constants

fabefecd + facefebd + fadefecb = 0.

by ta,2 to get

[tb,1, te,1]fecd + [tc,1, te,1]febd + [td,1, te,1]fecb = 0.

The ta,1 must satisfy this consistency equation in order to fit into a represen-
tation of g[[z]].

This requires us to evaluate commutators of the ta,1, which in the OPE
expression is a linear combination of elements of the form t′a ⊗ t′′b . The
commutator of such elements is

[t′a ⊗ t′′b , t
′
c ⊗ t′′d] = t′a ⊗ t′′b t

′
c ⊗ t′′d − t′c ⊗ t′′dt

′
a ⊗ t′′b

only the elements in the same representation multiply, giving

(t′at
′
c)⊗ (t′′b t

′′
d)− (t′ct

′
a)⊗ (t′′dt

′′
b ).

We can rewrite some parts of this expression in terms of commutators, but
in general there is no guarantee that we can write this as an element of the
representation ρ′⊗ρ′′. In fact we can use what we know about UEAs to make
these terms which are ‘quartic’ (have bi-degree (2,2)) in the ta to cancel up
to an error term

[t′a, t
′
c]⊗ (t′′b t

′′
d) + (t′ct

′
a)⊗ [t′′b , t

′′
d].
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Figure 12: Quantum correction of the diagram with three Wilson lines relat-
ing to the OPE. There are other corrections which relate to the R-matrix

These two terms have bi-degree (1,2) and (2,1) in the ta.

It can be checked that the consistency equation is not satisfied by the OPE
definition for ta,1. This is why we have a deformation of g[[z]].

The Yangian emerged from considerations of the Wilson line OPE, while the
R-matrix came from crossing Wilson lines. We should then relate the OPE
to crossing Wilson lines. Note that we coupled to an external gauge field A.
We could instead have this gauge field be supported on a third Wilson line
intersecting both lines, and then we would have terms of the type discussed
in the previous section, which give rise to R-matrices.

4.5 The Yangian

The Yangian Y (g) or Y for brevity is a deformation of U(g[[z]]), with the
deformation parametrised by ℏ. In other words, to O(1) in ℏ, Y and U(g[[z]])
are equivalent. In perturbation theory, ℏ is the loop-counting parameter.
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It is an example of a quantum group, although it is neither a group, nor
does its definition require any reference to theoretical physics. It might be
more accurately named a quantum group deformation. The Yangian could
then be more descriptively named a rational quantum group deformation,
with the ‘rational’ describing its association to rational r-matrix solutions to
the classical Yang-Baxter equation.

It carries an operation called the coproduct, ∆ : Y → Y ⊗Y . The coproduct
is a representation of g on the copy of g < Y (g) (that is, elements which are
order zero in z and order one in g). Taking X ∈ g < Y (g),

∆(X) = X ⊗ I + I ⊗X.

This is the trivial coproduct. ∆ is evaluated on the unit as

∆(I) = I ⊗ I.

The other axiomatic restriction a co-product must satisfy, which is perhaps
unfamiliar, is co-associativity. For X ∈ g < Y :

(∆⊗ I)∆(X) = (I ⊗∆)∆(X).

Both sides are elements of T 3Y (g). We can interpret them as an operator of
a three-particle state, and this tells us there is a unique action on a three-
particle state. For our co-product, both sides are the expected action of X
on a three-particle state:

X ⊗ I ⊗ I + I ⊗X ⊗ I + I ⊗ I ⊗X.

Co-associativity can easily be checked for I, and extends to higher-order
consistency conditions for higher-order tensor products.

The quantum correction first appears at the level of the coproduct of first
order terms in z:

∆(ta,1) = ta,1 ⊗ I + I ⊗ ta,1 −
ℏ
2
fabctb,0 ⊗ tc,0

and we see that setting ℏ = 0 gives the trivial coproduct.

The Yangian has the structure of a Hopf algebra. Label the generators
ta = ta,0, and ua = ta,1. Then the Yangian has trivial co-unit

ϵ : Y → C, ϵ(ta) = ϵ(ua) = 0
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and antipode

s : Y → Y, s(ta) = −ta, s(ua) = −ua +
1

2
fabctbtc.

These have the physical interpretation of a vacuum state representation and
a PT-transformation respectively.

Without the deformation, these definitions, together with the co-product,
are the inherited structures from the Hopf algebra of the tensor algebra.

This Yangian can be related back to the YBE, or rather the related RTT
relation and there is an informal account in [7]. In fact the RTT relation can
give an alternative definition of the Yangian.

5 Concluding remarks

The main goal of this essay was to relate three superficially different theories
together. These were

• 1+1 integrable continuum many-body scattering

• Integrable statistical lattices

• 4-Dimensional Chern-Simons theory.

It emerged that we could construct lattices from each theory, and further
that the vertices of each lattice was associated to an R-matrix12. A key
equation which made the first two cases ‘integrable’ was the YBE, and while
we didn’t show explicitly that the R-matrix from 4D CST satisfies the YBE
in general, we found that it is related to the Yangian, an algebraic structure
associated to rational solutions of the YBE.

The novel view was the third, the approach introduced by Costello, and
which we spent a large part of the essay introducing. On the one hand
it may have been surprising that integrable systems admit a gauge field
theory description. But gauge theory contains features we’d expect from an
integrable system.

12Quasi-classical R-matrix, in the 4D CST case.
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For example integrability can be associated to continuous symmetries, or a
Lie group G, which is precisely what we use to define the principal bundle P
where our theory lives.

The observables, Wilson lines, were needed to build our lattice. But we also
needed a theory that incorporated the YBE, which suggested that the lattice
should have diffeomorphism invariance allowing us to move the different lines.
It is known that 3D CST has such invariance, and this was used by Witten
to build a theory of quantum knot (link) invariants.

However, 3D CST has too much diffeomorphism symmetry: it has three di-
mensional diffeomorphism symmetry, rather than the two dimensional sym-
metry needed for the YBE. It is perhaps the step from 3D CST to the mixed
topological-holomorphic 4D CST which was Costello’s key insight.

We found Costello’s 4D CST had many nice features. One was that it was
actually non-renormalisable by power counting, which would normally make
for a poorly defined quantum theory. However it was shown in [3] that the
theory has a well-defined perturbation expansion. Furthermore, all new terms
that could appear vanished under the classical equations of motion. This
then meant the theory was infrared-free. Combined with diffeomorphism
invariance made for a powerful tool to restrict the interactions we had to
consider.

Evaluating the interaction between crossing Wilson lines largely completed
the story linking 4D CST to integrable theories.

Evaluating the OPE gave a surprise: we were obliged to change the G-
symmetry to a Yangian symmetry Y (g) at the algebra level. But this is
exactly what was needed for relating our quasi-classical R-matrix to (ratio-
nal) solutions of the YBE!

How can we use this new perspective of seeing integrable systems through
gauge theory? One way we could use this framework is to search for novel
integrable theories, or at least reformulate known integrable theories by pick-
ing the appropriate structures, similarly to how we can now use 3D CST to
construct novel knot invariants.

However, there are also known theories which do not currently fit directly
into this framework, such as the chiral Potts model, which does not admit a
quasi-classical R-matrix solution.
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This essay touches on a tiny part of a huge body of theory relating inte-
grability to field theories. It is largely based on the first few chapters of [4],
which goes into much more detail with 4D CST. However 4D CST is far from
the only field theory related to integrability. There is a generalisation to 6D
holomorphic CST, which can also be seen as a generalisation of a description
of integrable systems by 4D WZW theory. A different approach is found
using supersymmetric gauge theories in [8] and [9].

In [5], 4D CST is approached in a different way. A lattice of Wilson lines is
supported at z on C. The continuum limit is taken, so that the Wilson lines
cover all of Σ at z, creating a surface defect operator. This is then used to
recover integrable field theories.

There is also a wealth of literature on the Yang-Baxter equation, its relation
to the Bethe ansatz in the scattering setting and statistical lattice models,
and solutions to the YBE, as well as algebraic structures associated with the
YBE.

A Principal bundles

A principal bundle P is a fibre bundle P
π−→ M , whose fibres are almost

copies of a Lie group G. One way we may think about P is that is a partic-
ularly symmetric space under the action of G.

The reason we don’t take G itself is that G does not have G-symmetry under
its own (right) action, as the identity, a key structure of G, is displaced.

The fibres are what are known as G-torsors, written G̃. These are objects
which arise from ‘forgetting about the identity’ of G. For example, this is
the underlying manifold of a Lie group G, or the underlying affine space of
a vector space V . The right action on G̃ is the obvious one, inherited from
G’s right action on itself. Then G acts on P by acting on all fibres of P
simultaneously.

While we can’t make sense of a single point on the torsor being an element of
G, we can make sense of the difference between two points being an element
of G. Then we can recover G from its torsor by picking a base-point which
we take to be the identity.

As with all fibre bundles, P comes with local trivialisations Φ, so called as
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Figure 13: G-torsors: U(1) itself does not have U(1) symmetry under trans-
lations. But it almost does: the only obstruction is that the identity is not
preserved. If we ‘forget’ where the identity is, we get the G-torsor for U(1),
which is S1. Conversely, starting from (oriented) S1, by picking a base-point,
we can view the base-point as the identity, turning S1 into U(1)

they make P look locally like the trivial bundle, M × G̃. More precisely,
taking U ⊂ M open, Φ is an isomorphism from π−1(M) to U ×G.

We’re considering the simpler case where P is trivial, so that there also exist
global trivialisations Φ : P → M × G. There are non-trivial bundles which
are in some sense ‘twisted’, and physically this non-triviality is related to the
Aharonov-Bohm effect. However if P is over flat space M ∼= Rn, then P
must be trivial. We will eventually restrict ourselves to flat space, and going
forward we will use global trivialisations.

Trivialisations on P can be viewed as (cross-)sections on P . Recall a section
is a map e : M → P such that π(e(p)) = p. We view this section as picking
a basepoint/identity for each fibre. We then construct the trivialisation Φe

as follows: given x ∈ P such that π(x) = p, take the fiber-wise difference
between x and e(p), some element g(x) ∈ G. Then Φe : x 7→ (p, g(x)).

There is no preferred trivialisation. Indeed such a trivialisation would break
the G-invariance of P , as any trivialisation is not G-invariant13. We can
change between trivialisations. Taking two different trivialisations and view-
ing them as sections eα, eβ, their difference is a transition map gβα : M →
G.

13Mathematically speaking, it is precisely this right G-symmetry of P which is broken in
spontaneous symmetry breaking. In the simpler case of completely broken symmetry,
the Goldstone boson field ξ : M → G is the transition map between the preferred
trivialisation and the implicit trivialisation we work under in physics.
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Figure 14: G-bundles: There are few examples which are ‘visualisable’ (2-
or 3-dimensional). Say we ask dim(P ) = dim(M) + dim(G) ≤ 3. If G is
compact and simple, our options are G = SU(2) over a point, or G = U(1)
over a 1- or 2-manifold. Even taking M to be a 2-manifold, P is hard to
visualise without the help of a computer. If M is a 1-manifold, and we ask
that M be closed, M = S1. There are then only two inequivalent U(1)
bundles over S1. These are topologically equivalent to either the torus T 2,
which is the trivial bundle, or the Klein bottle K, which has a ‘twisted’
bundle structure.

We can start to relate this back to physical gauge theory. There we also
encounter maps g : M → G, under the name of gauge transformations,
and in fact transition maps are gauge transformations.

One standard practice in physics obscures this mathematical formalism,
which is that we always work under an implicit trivialisation. This is simi-
lar to how we always work under an implicit coordinate system for Minkowski
space, and never in a coordinate-free formalism of a real vector space equipped
with a bilinear form of signature (+,−,−,−).

In the geometric view, the principal connection A is a 1-form on P , valued
in g, with some conditions to be discussed later. The physical gauge field
A is this A under a trivialisation.

Under a gauge transformation g, the gauge field transforms as A 7→ A′ =
gAg−1 − dgg−1 up to a choice of conventions. From the geometric view,
if A has components A under one trivialisation, and one wishes to change
to a trivialisation which differs from the original by g, then under the new
trivialisation A has components A′.

The principal connection A must also satisfy two conditions. These are

1. Projection: let ξ ∈ g. Let Xξ be the vector field on P corresponding
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Figure 15: Trivialisations: While T 2, the principal bundle P , and S1 × U(1)
are all topologically equivalent, they have different amounts of structure, seen
most obviously by the number of projection maps each object comes equipped
with. Given a section eα : S1 → P , we view the section as an assignment of
base-points. This allows us to see P as S1×U(1). So sections of the principal
bundle are trivialisations. These trivialisations are not unique: we can pick
another trivialisation eβ, and the ‘difference’ is the transition map gβα.

to the action of ξ. Then A(Xξ) = ξ.

2. G-equivariance: Rg(A) = Adg−1A = gAg−1.

We won’t unpack what these mean mathematically, and instead discuss them
heuristically.

Vectors on P can be decomposed into a sum of a vector on M at p and a
vector on the fibre at p, isomorphic to G̃. The vector on G̃ can be identified
with a vector in g. When we say A is valued in g, we really think of it as
valued as a vector on the G̃ at p.

As A is a g valued 1-form on P , it is a linear map from vectors on P to vectors
on G̃. This condition is then a prescription for what A does to fibre-wise
vectors: it acts as the identity. However, it also projects the part of the vector
on M onto the fibre-wise direction, and a choice of connection constitutes a
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Figure 16: Connections: This figure illustrates a connection on P . It doesn’t
matter where we base the tangent vectors Xξ and γ′(0) vertically due to
G-symmetry. A preserves fibre-wise vectors Xξ. It projects γ′(0) into the
fibre-wise direction, and this demonstrates how a connection can be viewed
as a choice of horizontal subspace HA: we ‘slide’ the endpoint of γ

′(0) parallel
to HA until it points in the Xξ direction.
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Figure 17: Holonomy from the vector bundle perspective: This is the treat-
ment of holonomy commonly taught in GR. A connection defines a covariant
derivative, which in turn defines a notion of parallel transport. We can then
parallel transport a vector around a closed loop γ. The result is that the vec-
tor is acted on by a linear map. Here, the vectors live in the tangent bundle,
but generalising to associated vector bundles of principal bundles also takes
us to the same notion of holonomy.
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choice of how to project vectors on M onto the fibre-wise direction.

This is not to be confused with a choice of trivialisation; different choices of
trivialisation do not change the choice of projection.

G-equivariance means that A must be compatible with the G-bundle struc-
ture of P .
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